Product overview

Viconics’ latest generation S1000/2000/3000 series sensors have been especially developed for the VT7600 programmable and non-programmable thermostats as well as future Viconics thermostats. These robust sensors have provide accurate and stable temperature reading using a 10 Kohm thermistor element.

The S3000 series include all wall/room sensors, the S2000 series include all the duct/outdoor air models, and the S1000 include in duct change over sensing and submersible water sensing. Temperature averaging applications using only two or three S3000 sensors can easily be done by setting the dip switches to the appropriate position. It is to be noted that temperature averaging with the usual 4, 9, 16, 25, etc sensors can also be done, both with the S2000 and S3000 series. See table below for specific model numbers:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Application</th>
<th>Picture</th>
</tr>
</thead>
</table>
| S1010E1000 | Capsule type sensor for multi-purpose use, ¼" dia. capsule with 65 inch leads | • Remote sensing easy to dissimulate for indoor and outdoor use
 • Water temperature sensing strapped on pipe or in an immersion well | |
| S3010W1000 | Room sensor | • Remote room sensing
 • 3 thermistors with 2 dip switches are provided with each sensor for various averaging combinations | |
| S3020W1000 | Room sensor with temporary override key and occupancy LED | • Remote room sensing with override key and occupancy LED
 • 3 thermistors with 2 dip switches are provided with each sensor for various averaging combinations | |
| S2000D1000 | Duct sensor with junction box | • Remote return air temperature sensing with the sensor mounted on the return air duct.
 • Outside air temperature sensing with the sensor installed in the fresh air plenum.
 • Supply air temperature sensor | |
| S2060A1000 | Duct averaging sensor, with 6 ft sensor | • Remote averaging discharge air temperature sensing with the sensor mounted on the supply air duct.
 • Outside air temperature averaging sensing with the sensor installed in the fresh air plenum.
 • Mixed air temperature averaging sensor for economizer models with the sensor in | |
| S2020E1000 | Outside air sensor, NEMA 4 enclosure | • Outside air temperature sensing with the sensor installed directly exposed to the elements.
 • Sensor uses a water resistant NEMA 4 PVC enclosure for outdoor applications | |
| S1010D1000 | Duct Mounted Change Over Sensor | • Change Over Duct Sensing
 • Mounting: Through hole in duct, with eyelet | |
Installation of room sensors (S3010W1000 and S3020W1000)

- Remove security screw on the bottom of sensor cover.
- Open up by pulling on the bottom side of sensor. (Fig.1)

Location:
1- Should not be installed on an outside wall.
2- Must be installed away from any heat source.
3- Should not be installed near an air discharge grill.
4- Should not be affected by direct sun radiation.
5- Nothing must restrain vertical air circulation to the sensor.

Installation:
1. Remove security screw on the bottom of thermostat cover.
2. Open up by pulling on the bottom side of thermostat.
3. Pull out cables 6” out of the wall.
4. Wall surface must be flat and clean.
5. Insert cable in the central hole of the base.
6. Flip printed circuit board to access mounting hole.
7. Align the base and mark the location of the two mounting holes on the wall. Install proper side of base up.
8. Install anchors in the wall.
9. Insert screws in mounting holes on each side of the base. DO NOT OVERTIGHTEN
10. Strip each wire 1/4 inch.
11. Insert each wire according to wiring diagram.
12. Gently push back into hole excess wring back into the wall.
13. Press back printed circuit board into place.
14. Install the cover, top side.
15. Install security screw.

Installation of duct sensors (S2000D1000) – (Fig.3)

1. Drill 1” [25mm] hole mid height on the side of the duct to insert the probe.
2. Loosen swivel screw and direct the probe so that the flat side of probe tip is facing the airflow.
3. Mark the position of the two holes to be drilled for mounting the sensor on the duct. Fasten the sensor to the duct with the two screws provided. Do not overtighten!
4. Junction box must be directed downwards or sideways.
5. For best results, locate sensor as far as you can from heating/cooling source.

Installation of averaging sensor (S2060A1000) - (Fig.4)

1. Drill 5/8” [16 mm] hole for the element to pass into the duct.
2. Run the sensing element into the duct.
3. Remove the cover from the unit.
4. Mark the position of the holes to be drilled for mounting the case on the duct.
5. Fasten the sensor element in an “S” shaped pattern in order to cover the entire duct section area. Ensure that the probe does not touch the duct.
6. Firmly support the element in the duct using perforated steel strap and wire fastenings.
7. For best results, locate sensor as far as you can from heating/cooling source.

Installation of outside air sensor (S2020E1000) – (Fig.5)

1. Install sensor using mounting holes on each side.
2. Install on a vertical surface, respect mounting orientation.
3. Remove the four screws and remove the cover.
4. Strip each wire 1/4 inch.
5. Insert each wire according to wiring diagram.
6. Install the cover with supplied screws.
7. In snowy area allow sufficient height for snow accumulation.
Wiring example of single remote room sensor:

VT7600 Series
Thermostat
1x 3020W1000
Wiring 1 sensor
S2-1 = ON / S2-2 = ON

Dip switch setting for: 1 sensor

Wiring examples of 2 remote room sensors for averaging applications:

VT7600
Series
2x 3020W1000
Wiring 2 sensors
S2-1 = OFF / S2-2 = ON

Notes for averaging applications:
- S3010W1000 and S3020W1000 can be mixed matched.
- S3010W1000 and S3020W1000 are to be wired in parallel.
- Respect the dip switch setting in each remote sensor.

Wiring examples of 3 remote room sensors for averaging applications:

VT7600
Series
2x 3010W1000 and 1x S3020W1000
Wiring 3 sensors
S2-1 = OFF / S2-2 = OFF

VT7600
Series
1x 3010W1000 and 2x S3020W1000
Wiring 3 sensors
S2-1 = OFF / S2-2 = OFF

Temperature vs resistance chart for 10 kOhm NTC thermistor

$R_{25°C} = 10K ±3\%$, $B_{25/85°C} = 3975K±1.5\%$

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
<th>kohms</th>
<th>°C</th>
<th>°F</th>
<th>kohms</th>
<th>°C</th>
<th>°F</th>
<th>kohms</th>
<th>°C</th>
<th>°F</th>
<th>kohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>-4</td>
<td>94.5149</td>
<td>-10</td>
<td>-54.1988</td>
<td>0</td>
<td>32</td>
<td>32.1910</td>
<td>10</td>
<td>59.7390</td>
<td>20</td>
<td>68.4601</td>
</tr>
<tr>
<td>-19</td>
<td>-2</td>
<td>94.5149</td>
<td>-9</td>
<td>51.3992</td>
<td>1</td>
<td>34</td>
<td>30.8120</td>
<td>11</td>
<td>52.8277</td>
<td>21</td>
<td>70.1197</td>
</tr>
<tr>
<td>-18</td>
<td>0</td>
<td>94.5149</td>
<td>-8</td>
<td>48.7042</td>
<td>2</td>
<td>36</td>
<td>29.1167</td>
<td>12</td>
<td>45.9636</td>
<td>22</td>
<td>72.1408</td>
</tr>
<tr>
<td>-17</td>
<td>1</td>
<td>79.6808</td>
<td>-7</td>
<td>46.1933</td>
<td>3</td>
<td>37</td>
<td>27.0886</td>
<td>13</td>
<td>39.8640</td>
<td>23</td>
<td>73.9112</td>
</tr>
<tr>
<td>-16</td>
<td>2</td>
<td>75.3299</td>
<td>-6</td>
<td>43.8268</td>
<td>4</td>
<td>39</td>
<td>26.3744</td>
<td>14</td>
<td>34.6365</td>
<td>24</td>
<td>75.9443</td>
</tr>
<tr>
<td>-15</td>
<td>3</td>
<td>71.2430</td>
<td>-5</td>
<td>41.5956</td>
<td>5</td>
<td>41</td>
<td>25.1119</td>
<td>15</td>
<td>29.6286</td>
<td>25</td>
<td>77.0000</td>
</tr>
<tr>
<td>-14</td>
<td>4</td>
<td>67.4028</td>
<td>-4</td>
<td>39.4912</td>
<td>6</td>
<td>43</td>
<td>23.9712</td>
<td>16</td>
<td>24.9280</td>
<td>26</td>
<td>79.5754</td>
</tr>
<tr>
<td>-13</td>
<td>5</td>
<td>63.7928</td>
<td>-3</td>
<td>37.5056</td>
<td>7</td>
<td>45</td>
<td>22.7861</td>
<td>17</td>
<td>19.4269</td>
<td>27</td>
<td>81.9171</td>
</tr>
<tr>
<td>-12</td>
<td>6</td>
<td>60.3980</td>
<td>-2</td>
<td>35.6316</td>
<td>8</td>
<td>46</td>
<td>21.7151</td>
<td>18</td>
<td>13.6310</td>
<td>28</td>
<td>82.7860</td>
</tr>
<tr>
<td>-11</td>
<td>7</td>
<td>57.2044</td>
<td>-1</td>
<td>33.8622</td>
<td>9</td>
<td>48</td>
<td>20.7004</td>
<td>19</td>
<td>8.3067</td>
<td>29</td>
<td>84.8190</td>
</tr>
</tbody>
</table>

WIRING S2000D1000, S2060A1000 and S2020E1000

Remote wiring 1 sensor

Remote wiring 4 sensors

![Wall mounted sensor Diagram](image)
Specifications:

General for all sensors

- Sensor type: 10 K ohm NTC thermistor
- Maximum wire length: 5,000 feet [1,525 m] for 24 GA wire and up

Room sensors (S3010W1000 and S3020W1000)

- Operating conditions: 0 °C to 50 °C (32 °F to 122 °F)
- Storage conditions: -30 °C to 50 °C (-22 °F to 122 °F)
- Dimensions: 4.94” [125 mm] high, 3.38” [86 mm] wide, 1.13” [29 mm] thick
- Approximate shipping weight: 0.34 LBS (155 grams)
- Enclosure plastic type: ABS - FRI [WT1337V] UV stabilized

Duct sensor (S2000D1000)

- Operating conditions: -40 °C to 50 °C (-40 °F to 122 °F)
- Storage conditions: -40 °C to 70 °C (-40 °F to 158 °F)
- Dimensions: (refer to drawing Fig.8)
- Approximate shipping weight: 0.7 LBS [0.3 Kg]
- Probe tip plastic type: Fire retarding grade "HB" ABS

Averaging sensor (S2060A1000)

- Operating conditions: -40 °C to 50 °C (-40 °F to 122 °F)
- Storage conditions: -40 °C to 70 °C (-40 °F to 158 °F)
- Sensing element length: 72 in [1.83 m]
- Sensing element diameter / material: 3/16” [5 mm] / copper tube
- Dimensions: (refer to drawing Fig.9)
- Approximate shipping weight: 1.6 LBS [0.7 Kg]

Outside air sensor (S2020E1000)

- Operating and storage conditions: -40 °C to 50 °C (-40 °F to 122 °F)
- Dimensions: (refer to drawing Fig.10)
- Approximate shipping weight: 1.1 LBS [0.5 Kg]
- Enclosure plastic type: NEMA 4 PVC

Duct Mounted Temperature Sensor (S1010D1000)

- Operating conditions: Up to 85°C [185°F]
- Sensing Bulb Type: Plastic Heatshrink
- Dimensions: (refer to drawing Fig.11)
- Wire Length: 12” [305 mm]
- Probe length / Diameter: 4-1/2” [114 mm] / 1/4” [6 mm]

Important notice

All S1000, S2000 and S3000 series sensors are for use as operating controls only and are not safety devices. These instruments have undergone rigorous tests and verifications prior to shipment to ensure proper and reliable operation in the field. Whenever a control failure could lead to personal injury and/or loss of property, it becomes the responsibility of the user / installer / electrical system designer to incorporate safety devices (such as relays, flow switch, thermal protections, etc..) and/or alarm system to protect the entire system against such catastrophic failures. Tampering of the devices or miss application of the device will void warranty.