Product overview

The VTR73XX Series Fan Coil Terminal Equipment Controller used in conjunction with the VC3000 Series Line Voltage Switching Relay Packs is specifically designed for fan coil control applications. They can be used both for new or retrofit applications. In retrofit applications, they can re-use the existing wires between the old line voltage switching thermostat and the fan coil thus saving on the installation of any new wires. Stand-alone and network operation are available.

The VTR73XX Series Fan Coil Terminal Equipment Controller features a backlit LCD display with dedicated function menu buttons for simple operation. Accurate temperature control is achieved due to the product’s PI proportional control algorithm, which virtually eliminates temperature offset associated with traditional, differential-based Terminal Equipment Controllers. All models feature configurable System and Fan button functions to meet all possible applications. The VTR73XX Terminal Equipment Controllers are powered and communicate with the associated VC3000 Series Relay Pack(s) using only 3 wires.

2 types of interfaces for the user can be ordered. The VC73x5 models are typically used for hotel and lodging applications where the middle button of the interface is for the user to select the local displayed scale in °F or °C. The VC73x0 models are typically used for commercial and institution applications where the middle button of the interface is defined for the local unoccupied override function.

The VTR73XX Terminal Equipment Controllers are also compatible with the new Viconics PIR cover accessories. Terminal Equipment Controllers equipped with a PIR cover provide advanced active occupancy logic, which will automatically switch occupancy levels from Occupied to Stand-By and Unoccupied as required by local activity being present or not. This advanced occupancy functionality provides advantageous energy savings during occupied hours without sacrificing occupant comfort. All Terminal Equipment Controllers can be ordered with or without a factory installed PIR cover (see ordering notes below).

The compatible VC3000 Series Line Voltage Switching Relay Pack(s) operate as slave unit(s) under the control of a single master VTR73XX Terminal Equipment Controller. A single VTR73XX Terminal Equipment Controller can control up to 10 VC3000 Series Relay Pack. The VC3000 Series Relay Packs are line-powered units. They locally contain all the relay outputs for fan switching and valve control. Models are also available for extra monitoring / control inputs of the Fan Coil Units.

The additional following documents are available at: www.viconics.com
- PIR application information and examples, are available on document: APP-PIR-Guide-Exx
- PIR cover installation information is available on document: PIR Cover Installation-Exx
- Information on the LON models (VTR73xxX5v00E), is available on document ITG-VTR73-PIR-LON-Exx
- Information on the BACnet models (VTR73xxX5v00B), is available on document ITG-VTR73-PIR-BAC-Exx
- Information on the Wireless models (VTR3xxX5v00W), is available on documents: ITG-VWG-40-BAC-Exx and LIT-VWG-40-SETUP-Exx

VTR73XXA models available

<table>
<thead>
<tr>
<th>Viconics part number</th>
<th>VTR7300A5x00(x)</th>
<th>VTR7350A5x00(x)</th>
<th>VTR7305A5x00(x)</th>
<th>VTR7355A5x00(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary market</td>
<td>Commercial and institution applications</td>
<td>Hotels and lodging applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User interface definition</td>
<td>Commercial and institution applications</td>
<td>Hotels and lodging applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On board %RH sensor</td>
<td>None</td>
<td>Yes</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>For dehumidification strategy</td>
<td>None</td>
<td>Yes</td>
<td>None</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Ordering Information Notes:
The (X) at the end of the model number represents available communication options:
- X = none for Stand-alone
- X = E for Echelon
- X = B for BACnet MS-TP
- X = W for Wireless

The Terminal Equipment Controllers can be ordered with a factory installed PIR cover. Please use (5500) extension instead of the (5000) only extension. The Terminal Equipment Controllers ordered without a PIR cover can be retrofitted with a separate PIR accessory cover afterwards if required.

Ordering examples:
- A VTR7305AW5500B is for a wall mounted Terminal Equipment Controller with a hotel / lodging interface with a factory mounted PIR cover and an MS-TP BACnet communication interface.
- A VTR7350A5000W is for a wall mounted Terminal Equipment Controller with a commercial / institution interface and a wireless communication interface. The Terminal Equipment Controller can be retrofitted with a separate PIR accessory cover afterwards if required.
VC3xxxX relay pack models available

<table>
<thead>
<tr>
<th>Applications</th>
<th>VC3500E5000</th>
<th>VC3504E5000</th>
<th>VC3400E5000</th>
<th>VC3404E5000</th>
<th>VC3300E5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 pipes</td>
<td>2 pipes</td>
<td>2 pipes</td>
<td>2 pipes</td>
<td>2 pipes</td>
<td>Slave fan Unit</td>
</tr>
<tr>
<td>2 pipes with reheat</td>
<td>2 pipes with reheat</td>
<td>2 pipes with modulating pulsed reheat</td>
<td>2 pipes with modulating pulsed reheat</td>
<td>Slave fan Unit</td>
<td></td>
</tr>
<tr>
<td>4 pipes</td>
<td>4 pipes</td>
<td>4 pipes</td>
<td></td>
<td></td>
<td>Slave fan Unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan control</th>
<th>Up to 3 speed</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Monitoring inputs</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>4 FCU remote inputs</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Control types</th>
<th>On-Off line switched valve output control</th>
<th>Slave fan control only</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1 heat / cool output</td>
<td>- 1 Modulating pulsed Vdc output for SSR electric reheat control</td>
<td>- 1 heat / cool output</td>
</tr>
<tr>
<td>- 1 cool output</td>
<td>- 1 cool output</td>
<td>- 1 cool output</td>
<td>- 1 Modulating pulsed Vdc output for SSR electric reheat control</td>
<td>- 1 Modulating pulsed Vdc output for SSR electric reheat control</td>
<td>- 1 Modulating pulsed Vdc output for SSR electric reheat control</td>
</tr>
<tr>
<td>- 3 fan outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 fan outputs</td>
</tr>
</tbody>
</table>

Ordering Information Notes:

Please refer to the “Operation overview” section for related information on VTR73xxA and VC3xxxX arrangements and possible combinations.

- More than one VC3xxxX Relay Pack can be used for a single VTR73xxA Terminal Equipment Controller.
- Only one VC3x4X Relay Pack with monitoring inputs can be used for a single VTR73xxA Terminal Equipment Controller.

Ordering examples:

- A VC3500E5000 is for a 90 to 277 Vac powered FCU mounted Relay Pack with the following outputs:
 - Three 90 to 277 Vac switching fan relay outputs
 - Two 90 to 277 Vac switching valve relay outputs

- A VC3504E5000 is for a 90 to 277 Vac powered FCU mounted Relay Pack with the following inputs and outputs:
 - One configurable universal input
 - One configurable binary input
 - One dedicated discharge air temperature monitoring input
 - One dedicated return air temperature control input
 - Three 90 to 277 Vac switching fan relay outputs
 - Two 90 to 277 Vac switching valve relay outputs

- A VC3300E5000 is for a 90 to 277 Vac powered FCU mounted Relay Pack with the following outputs:
 - Three 90 to 277 Vac switching fan relay outputs

Features and benefits

Features VTR73xxA Terminal Equipment Controller

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models available with internal humidity sensing</td>
<td>Increased occupant comfort through dehumidification</td>
</tr>
<tr>
<td>Advanced occupancy functions</td>
<td>Through the network or smart local occupancy sensing</td>
</tr>
<tr>
<td>Ready for PIR accessory cover</td>
<td>Fully integrated advanced occupancy functionality</td>
</tr>
<tr>
<td>Configurable sequences of operation</td>
<td>Single model meets more applications</td>
</tr>
<tr>
<td>Configurable fan functions button</td>
<td>Meets more applications with a single model</td>
</tr>
<tr>
<td>Unique configuration setup utility</td>
<td>Minimizes parameter tampering</td>
</tr>
<tr>
<td>Multi level lockable keypad</td>
<td>Tamper proof, no need for Terminal Equipment Controller guards</td>
</tr>
<tr>
<td>Auto Fan speed mode</td>
<td>Increased occupant comfort in cooling mode by reducing humidity and offer less fan noise in all mode of operation</td>
</tr>
</tbody>
</table>

Features VC3xxxX Relay Pack

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal line powered from 90 to 277 Vac</td>
<td>No external transformer needed</td>
</tr>
<tr>
<td>Line switching from 90 to 277 Vac</td>
<td>No pilot duty relay required</td>
</tr>
<tr>
<td>2 configurable inputs</td>
<td>Adds functionality</td>
</tr>
<tr>
<td>Dedicated discharge air temperature monitoring</td>
<td>Adds functionality</td>
</tr>
<tr>
<td>Dedicated return air temperature control</td>
<td>Return air temperature control where application dictates</td>
</tr>
<tr>
<td>Pulsed Vdc output for SSR electric reheat</td>
<td>Advanced modulating electric heat control on specific models</td>
</tr>
</tbody>
</table>
Operation overview

The VC3xxxX Series Line Voltage Switching Relay Pack(s) operate as slave unit(s) under the control of a single master VTR73xxA Terminal Equipment Controller.

A) Each application below represents typical 3 speed FCU fan motor applications. Fan operation can be configured and wired for the following:
- 3 Speed configuration using 3 fan relays (Low – Med - High)
- 2 Speed configuration using 2 fan relays (Low - High)
- 3 Speed configuration with Auto fan speed mode using 3 fan relays (Low – Med - High)
- 2 Speed configuration with Auto fan speed mode using 2 fan relays (Low - High)
- Single fan speed configuration.

B) Each application below represents typical 2 or 4 pipe heating / cooling FCU applications.

2 or 4 pipe only operation can be configured and wired for the following:
- Cooling only
- Heating only
- Cooling / Heating with network or local auto changeover

2 or 4 pipe only with electric reheat can be configured and wired for the following:
- Cooling only
- Heating only
- Cooling / Heating with network or local auto changeover
- On-Off electric reheat only
- Cooling with On-Off or modulating Vdc pulsed electric reheat (model dependent)
- Heating with On-Off or modulating Vdc pulsed electric reheat (model dependent)
- Cooling / Heating with network or local changeover with On-Off or modulating Vdc pulsed electric reheat (model dependent)

Operation Concept

- The VC3xxxX Relay Pack supplies power to the wall VTR73xxA Terminal Equipment Controller.
- The VTR73xxA Controller operates the VC3xxxX Relay Pack(s) via a simple communication bus.
- A maximum of 10 VC3xxxX Relay Pack can be used under a single VTR73xxA Terminal Equipment Controller.
- 3 wires minimum are required between the VTR73xxA Controller and the first VR7300 Relay Pack.
- The 3 wire functions are as follow:
 - 1 Tx / Rx Communication
 - 2 Power Hot 7.0 Vdc 4 Watts maximum (required for the VTR73xxA Controller power)
 - 3 Power common
- Commands for fan speed and valve operation are issued from the VTR73xxA Terminal Equipment Controller to the VC3xxxX Relay Pack(s)
- FCU Remote inputs for monitoring and control. Remote inputs are read at the VC3xxxX Relay Pack (models with inputs only). The present value of these inputs are read by the VTR73xxA Terminal Equipment Controller for it’s internal operation
 - RUI1 can be configured for:
 - None = no functions associated
 - COS = for a local 2 pipes system Change Over thermistor sensor
 - COC NO = for a local 2 pipes system Change Over Normally Opened dry contact thermostat
 - COC NC = for a local 2 pipes system Change Over Normally Closed dry contact thermostat
 - Service = A local and / or networked service alarm
 - Filter = A local and / or networked dirty filter alarm
 - RBI2 can be configured for:
 - None = no functions associated
 - Service = A local and / or networked service alarm
 - Filter = A local and / or networked dirty filter alarm
 - SS is dedicated to a discharge air sensor (Auto Detect)
 - RS is dedicated to a remote return air sensor (Auto Detect)
- VTR73xxA Occupancy function remote inputs. All wiring for those remote inputs is located at the wall VTR73xxA Terminal Equipment Controller.
 - BI1 can be configured for:
 - None = no functions associated
 - Motion NO = for a remote normally opened contact PIR motion sensor
 - Motion NC = for a remote normally closed contact PIR motion sensor
 - Rem NSB = for usage with a remote on-off contact device for the occupancy function. A typical application is a room tenant card holder, which force the occupancy if the card is inserted in the holder.
 - Window = A local and/or networked window opened alarm. The system heating and cooling actions are also locked out.
 - BI2 can be configured for:
 - None = no functions associated
 - DoorDry = for usage of a PIR and entrance door switch for lodging occupancy routine
- All communication wires (if needed) are located at the VTR73xxA Terminal Equipment Controller

Typical one to one set-up
Typical line wiring one to one setup

<table>
<thead>
<tr>
<th>Line Voltage Electrical Ratings</th>
<th>VC3500E5000</th>
<th>VC3504E5000</th>
<th>VC3400E5000</th>
<th>VC3404E5000</th>
<th>VC3300E5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>-</td>
<td>90 to 277 Vac universal all models</td>
<td>-</td>
<td>-</td>
<td>Slave Fan Unit</td>
</tr>
<tr>
<td>- Black Hot L1 Power Vac</td>
<td>-</td>
<td>(Switches: Brown, Blue, Red & Yellow)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- White Neutral Power Vac</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fan line voltage contact</td>
<td>3 Fan Speed</td>
</tr>
<tr>
<td>Wire connections</td>
<td>Control Wires</td>
<td>Control Wires</td>
<td>Control Wires</td>
<td>Control Wires</td>
<td>Control Wires</td>
</tr>
<tr>
<td>½ HP Maximum</td>
<td>Brown, Blue, Red</td>
</tr>
<tr>
<td>Valve line voltage contact</td>
<td>4 Pipes Cool output</td>
<td>4 Pipes Cool output</td>
<td>2 Pipes Heat / Cool output</td>
<td>2 Pipes Heat / Cool output</td>
<td>N/A</td>
</tr>
<tr>
<td>Yellow wire connection</td>
<td>Or 2 Pipes Heat / Cool output</td>
<td>Or 2 Pipes Heat / Cool output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10A maximum</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Valve line voltage contact</td>
<td>4 Pipes Heat output</td>
<td>4 Pipes Heat output</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Orange wire connections</td>
<td>Or Isolated dry contact output</td>
<td>Or Isolated dry contact output</td>
<td>output</td>
<td>output</td>
<td>output</td>
</tr>
<tr>
<td>10A maximum</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- Black - Hot Power
- Orange - Connected to Black Hot
- White - Neutral

Fan Speed Arrangement
- By Configuration
- 3 Speed Applications
- 2 Speed Applications
- Single Speed Applications

Valve line voltage connection
- Yellow wire connection for 2 pipe applications
- Orange - Heating Valve
- Yellow - Cooling Valve

Relay Pack
- VC3504E

Applications
- 3 Speed
- 2 Speed
- Single Speed

For electric reheat applications
- Where current draw is under above 10 A
- Use a line powered coil pilot duty relay or contactor for the heating element
 - In place of the heating valve

For 2 pipe applications
- Use cooling valve yellow wire connection
Typical master slave applications with single or multiple fan(s)

Basic single FCU applications

- One fan motor under 1/2HP

- Two (or more) fan motors where:
 - each fan motor is under 1/2HP
 - totalling under 1/2HP combined

- One, Two (or more) fan motors where each fan motor is more than 1/2HP
 (Pilot duty application)

- Two (or more) fan motors where:
 - each fan motor is under 1/2HP
 - totalling more than 1/2HP combined

- One, Two (or more) fan motors
 - each fan motor is more than 1/2HP
 - pilot duty application
 - relay or contactor coil is line powered

- Two (or more) fan motors
 - each motor under 1/2 HP
 - totalling more than 1/2 HP combined
Advanced single FCU applications

- One fan motor under 1/2HP

- One, Two (or more) fan motors where each fan motor is more than 1/2HP
 - (Pilot duty application)

- Two (or more) fan motors where:
 - each fan motor is under 1/2HP
 - totalling under 1/2HP combined

- Two (or more) fan motors where:
 - each fan motor is under 1/2HP
 - totalling more than 1/2HP combined

- One, Two (or more) fan motors where:
 - each fan motor is more than 1/2HP
 - pilot duty application
 - relay or contactor coil is line powered

- Two (or more) fan motors where:
 - each motor under 1/2 HP
 - totalling more than 1/2 HP combined
Basic multiple FCU applications

- One fan motor per FCU under 1/2HP

- Two (or more) fan motors per FCU where
 - each fan motor is under 1/2HP
 - totalling under 1/2HP combined
Two (or more) fan motors per FCU where:
- each fan motor is under 1/2HP
- totalling more than 1/2HP combined

One, Two (or more) fan motors per FCU where each fan motor is more than 1/2HP
- (Pilot duty application)
Advanced multiple FCU applications (only one VR7300C Relay Pack with remote I/O can be used)

- One fan motor under 1/2HP

- Two (or more) fan motors where
 - each fan motor is under 1/2HP
 - totalling *under* 1/2HP combined
- Two (or more) fan motors where:
 - each fan motor is under 1/2HP
 - totalling more than 1/2HP combined

- One, Two (or more) fan motors where each fan motor is more than 1/2HP
 (Pilot duty application)
Configurable BI, RBI, UI, RUI inputs overview

BI1, Binary input #1 can be configured for the following functions:

1. **(None):** No function will be associated with the input
2. **(Rem NSB):** remote NSB timer clock input. The scheduling will now be set as per the binary input. It provides low cost setback operation via a dry contact
 - Contact opened = Occupied
 - Contact closed = Unoccupied
3. **(Motion NO) and (Motion NC):** Advanced PIR occupancy functions using a Normally Open (NO) or Normally Closed (NC) remote PIR motion sensor. Occupancy mode is now set as per applied PIR function and configuration. Application information and examples, are available on document: APP-PIR-Guide-Exx. This document will provide the installers and system designers with detailed examples on applications, parameter configuration information, sequence of operation, troubleshooting and diagnostic help required for the proper usage of the PIR accessory covers
4. **(Window) EMS:** Forces the system to disable any current heating or cooling action by the Terminal Equipment Controller. The mode stays the same and the current setpoints are the same Occupied setpoints. Only the outputs are disabled. There is a Door/Window alarm displayed on the Terminal Equipment Controller to indicate to the local tenant that the door/window needs to be closed for cooling or heating to resume. Use NC contact.
 - Contact opened = System disabled with local Window alarm
 - Contact closed = System enabled

BI2, Binary input #2 can be configured for the following functions:

1. **(None):** No function will be associated with the input
2. **(Door Dry) Door contact & Motion detector:** This configuration is only functional if binary input #1 is set to Motion NO or Motion NC or a PIR accessory cover is used.
 With this sequence enabled, the occupancy is now dictated through those 2 inputs. Any motion detected will set the zone to occupied status. The zone will remain permanently in occupied mode until the door contact switch opens momentarily. The Terminal Equipment Controller will then go in stand-by mode. If more movements are detected, the occupied mode will resume. While the door is opened, any movements detected by the remote PIR sensor or the PIR accessory cover will be ignored. Use a Normally Closed contact-switching device.
 - Contact opened = Door opened
 - Contact closed = Door closed

RU1, Remote universal input #1 on VC3xxxX can be configured for the following functions:

1. **(Filter):** a backlit flashing Filter alarm will be displayed on the Terminal Equipment Controller LCD screen when the input is energized. It can be tied to a differential pressure switch that monitor filters
 - Contact opened = No alarm
 - Contact closed = Alarm displayed
2. **(Service):** a backlit flashing Service alarm will be displayed on the Terminal Equipment Controller LCD screen when the input is energized. It can be tied in to the AC unit control card, which provides an alarm in case of malfunction.
 - Contact opened = No alarm
 - Contact closed = Alarm displayed

RU2, Remote binary input #2 on VC3xxxX can be configured for the following functions:

1. **(Filter):** a backlit flashing Filter alarm will be displayed on the Terminal Equipment Controller LCD screen when the input is energized. It can be tied to a differential pressure switch that monitor filters
 - Contact opened = No alarm
 - Contact closed = Alarm displayed
2. **(Service):** a backlit flashing Service alarm will be displayed on the Terminal Equipment Controller LCD screen when the input is energized. It can be tied in to the AC unit control card, which provides an alarm in case of malfunction.
 - Contact opened = No alarm
 - Contact closed = Alarm displayed
VTR73xxA Terminal Equipment Controller Installation

- Remove security screw on the bottom of Terminal Equipment Controller cover.
- Open up by pulling on the bottom side of Terminal Equipment Controller.
- Remove Assembly and remove wiring terminals from sticker. (Fig. 3)
- Please note the FCC ID and IC label installed in the cover upon removal of cover for the wireless products.

A) Location:
1. Should not be installed on an outside wall.
2. Must be installed away from any heat source.
3. Should not be installed near an air discharge grill.
4. Should not be affected by direct sun radiation.
5. Nothing must restrain vertical air circulation to the Terminal Equipment Controller.

B) Installation:
1. Swing open the Terminal Equipment Controller PCB to the left by pressing the PCB locking tabs. (Fig. 4)
2. Pull out cables 6" out of the wall.
3. Wall surface must be flat and clean.
4. Insert cable in the central hole of the base.
5. Align the base and mark the location of the two mounting holes on the wall.
 Install proper side of base up.
6. Install anchors in the wall.
7. Insert screws in mounting holes on each side of the base. (Fig. 4)
8. Gently swing back the circuit board on the base and push on it until the tabs lock it.
9. Strip each wire 1/4 inch.
10. Insert each wire according to wiring diagram.
11. Gently push back into hole excess wire (Fig. 5)
12. Re-Install wiring terminals in correct location. (Fig. 5)
13. Reinstall the cover (top side first) and gently push back extra wire length into the hole in the wall.

⚠️
- If replacing an old Terminal Equipment Controller, label the wires before removal of the old Terminal Equipment Controller.
- Electronic controls are static sensitive devices. Discharge yourself properly before manipulation and installing the Terminal Equipment Controller.
- Short circuit or wrong wiring may permanently damage the Terminal Equipment Controller or the equipment.
- All VTR73xxA series Terminal Equipment Controllers are to be used only as operating controls. Whenever a control failure could lead to personal injury and/or loss of property, it becomes the responsibility of the user to add safety devices and/or alarm system to protect against such catastrophic failures.
VTR73xxA Terminal Equipment Controller Terminal Identification and Function

<table>
<thead>
<tr>
<th>Terminal Identification</th>
<th>All VTR73xxA5x00(X) Terminal Equipment Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal 3</td>
<td>Tx – Rx Communication</td>
</tr>
<tr>
<td>Terminal 4</td>
<td>Power Hot 7.0 Vdc</td>
</tr>
<tr>
<td>Terminal 5</td>
<td>Power Common</td>
</tr>
<tr>
<td>Terminal 13</td>
<td>BI 1 (Configurable)</td>
</tr>
<tr>
<td>Terminal 14</td>
<td>Scom</td>
</tr>
<tr>
<td>Terminal 15</td>
<td>BI 2 (Configurable)</td>
</tr>
</tbody>
</table>

VC3xxxX Relay Pack Terminal & Wire Identification and Function

<table>
<thead>
<tr>
<th>VC3500E5000</th>
<th>VC3504E5000</th>
<th>VC3400E5000</th>
<th>VC3404E5000</th>
<th>VC3300E5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Voltage Terminals</td>
<td>No local inputs</td>
<td>Low Voltage inputs</td>
<td>No local inputs</td>
<td>Low Voltage inputs</td>
</tr>
<tr>
<td>1</td>
<td>Tx / Rx</td>
<td>Tx / Rx</td>
<td>Tx / Rx</td>
<td>Tx / Rx</td>
</tr>
<tr>
<td>2</td>
<td>7 Vdc</td>
<td>7 Vdc</td>
<td>7 Vdc</td>
<td>7 Vdc</td>
</tr>
<tr>
<td>3</td>
<td>Com</td>
<td>Com</td>
<td>Com</td>
<td>Com</td>
</tr>
<tr>
<td>4</td>
<td>RUI 1</td>
<td>RUI 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Scom</td>
<td>Scom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RBI 2</td>
<td>RBI 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>SS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RS</td>
<td>RS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Heat -</td>
<td>Heat -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Heat +</td>
<td>Heat +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Line Voltage Connections

- Power supply
 - 90 to 277 Vac universal all models
 - Black Hot L1 Power Vac (Switches: Brown, Blue, Red & Yellow)
 - White Neutral Power Vac

Fan line voltage contact
- Wire connections
 - ½ HP Maximum
 - 3 Fan Speed Control Wires
 - Brown, Blue, Red

Valve line voltage contact output
- Wire connections
 - Yellow wire connection
 - 10A maximum
 - 4 Pipes Cool output
 - Or
 - 2 Pipes Heat / Cool output

Valve line voltage isolated contact output
- Wire connections
 - 2 x Orange wires
 - 2 x Orange wires
 - Connections
 - 10A maximum
 - 4 Pipes Heat output
 - Or
 - 2 Pipes reheat output

Only ONE VC3xxxX Relay Pack with remote monitoring inputs can be used under a single VTR73xxA Controller. All other slave units must be either VC3xxxX Relay Pack(s) WITHOUT remote inputs. A maximum of 10 VC3xxxX Relay Packs can be used for a single VTR73xxA Terminal Equipment Controller.

VTR73xxA Terminal Equipment Controller Power & Communication Wiring to VC3xxxX Relay Pack

Only ONE VC3xxxX Relay Pack with remote monitoring inputs can be used under a single VTR73xxA Controller. All other slave units must be either VC3xxxX Relay Pack(s) WITHOUT remote inputs. A maximum of 10 VC3xxxX Relay Packs can be used for a single VTR73xxA Terminal Equipment Controller.

From the VTR73xxA Terminal Equipment Controller to the first VC3xxxX Relay Pack
- Existing or new field wires
- 3 minimum required 14-22 Ga Solid or Stranded. Shield not necessary.

From the first VC3xxxX Relay Pack connected to the controller to all other VC3xxxX Relay Pack(s)
- Existing or new field wires
- 2 minimum required 14-22 Ga Solid or Stranded. Shield not necessary.
- Connect only 1 Power Common & 2 Tx-Rx Communication
Wiring of Local Inputs to VTR73xxA Terminal Equipment Controller

Local BI 1 Input by configuration:
- None (monitoring only)
- Remote motion detector: Motion NO or Motion
- Remote Night Setback:
- Window contact: Window

Local BI 2 Input by configuration:
- None (monitoring only)
- Door contact: DoorDry

VTR73xxA Terminal Controller

Wiring of Remote Inputs to VC3504E & 3404E Relay Packs

Remote RUI 1 Input by configuration:
- None (monitoring only)
- Local changeover sensor (10K type2 COS)
- Local changeover contact (COC NO or COC NC)
- Service alarm (Service)
- Filter Alarm (Filter)

Remote RBI 2 Input by configuration:
- None (monitoring only)
- Service alarm (Service)
- Filter Alarm (Filter)

SS Supply sensor:
- 10K type2 monitoring only
- Auto detected

RS Return Air Sensor:
- 10K type2 main temperature control
- Auto detected (by-passes VTR73xxA internal sensor)
Typical Wiring of Line Voltage Components of VC7350xx Relay Packs

VC3504E Relay Pack

- Black - Hot Power
- Orange - Connected to Black Hot
- White - Neutral
- Brown - High Speed
- Blue - Medium Speed
- Red - Low Speed
- For 2 pipe applications use cooling valve yellow wire connection

VC3504E Relay Pack

- Black - Hot Power
- Green - Connected to Black Hot
- White - Neutral
- Brown - High Speed
- Blue - Medium Speed
- Red - Low Speed
- For electric reheat applications where current draw is under 10 A use a line powered coil pilot duty relay or contactor for the heating element in place of the heating valve

For electric reheat applications where current draw is under 10 A wire the resistive heater element as below
- Use the Green wire as isolated switching input
- Limits & safeties not showed & supplied with heater

Resistive Electric Element Safeties Not Show
Wiring of Pulsed Electric Reheat Applications Components of VC340xX Relay Pack

Status LED
VC3xxxX Relay Packs are equipped with a single green status LED beside the low voltage screw terminals.

- **Green LED off**: Line power to the VC3xxxX Relay Pack is off

- **Green LED 2 short pulse fast blinking**:
 - Line power to the VC3xxxX Relay Pack is on
 - No active communication has been received from a VTR73xxA Terminal Equipment Controller in the past 10 seconds.
 - The VC3xxxX Relay Pack is in stand-by mode with all outputs reset to their default “off demand” contact opened state.

- **Green LED 2 short pulse fast blinking & 1 long pulse**:
 - Line power to the VC3xxxX Relay Pack is on
 - Communication active and has been received from a VTR73xxA Terminal Equipment Controller.
 - The VC3xxxX Relay Pack is in operational mode.

All VC3xxxX Relay Pack(s) are for use as operating controls only and are not safety devices. These instruments have undergone rigorous tests and verifications prior to shipment to ensure proper and reliable operation in the field. Whenever a control failure could lead to personal injury and/or loss of property, it becomes the responsibility of the user / installer / electrical panel designer to incorporate safety devices (such as relays, flow switch, thermal protections, etc...) and/or alarm system to protect the entire system against such catastrophic failures. Tampering of the devices or miss application of the device will void warranty.

Provide overload protection and disconnect as required.
Programming and status display instructions

Status display

The VTR73xxA Terminal Equipment Controller features a two-line, eight-character display. There is a low-level backlight level that is always active and can only be seen at night.

When left unattended, the Terminal Equipment Controller has an auto scrolling display that shows the actual status of the system. There is an option in the configuration menu to lockout the scrolling display and to only present the room temperature and conditional outdoor temperature to the user. With this option enabled, no local status is given of mode, occupancy and relative humidity.

Each item is scrolled one by one with the back lighting in low level mode. Pressing any key will cause the back light to come on to high level. When left unattended for 10 seconds after changes are made, the display will resume automatic status display scrolling.

To turn on the back light to high level, press any key on the front panel. The back lit display will return to low level when the Terminal Equipment Controller is left unattended for 45 seconds.

Sequence of auto-scroll status display:

<table>
<thead>
<tr>
<th>Room & Humidity</th>
<th>System Mode</th>
<th>Schedule Status</th>
<th>Outdoor Temperature</th>
<th>Alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX °C or °F</td>
<td>Sys mode</td>
<td>Occupied</td>
<td>Outdoor °C or °F</td>
<td>Service</td>
</tr>
<tr>
<td>XX % RH</td>
<td>Auto</td>
<td>Stand-By</td>
<td>Network value only</td>
<td>Filter</td>
</tr>
<tr>
<td></td>
<td>Cool</td>
<td>Unoccup</td>
<td></td>
<td>Window</td>
</tr>
<tr>
<td></td>
<td>heat</td>
<td>Override</td>
<td></td>
<td>Low Batt</td>
</tr>
</tbody>
</table>

% RH display is conditional to:

(Humidity display is model and configuration dependent)
- Model with RH sensor built in
- Display function can be enabled with RH display parameter. Displayed range is 10 to 90 % RH

Outdoor air temperature
- Display is only enabled when outdoor air temperature network variable is received.

Occupancy Status
- Occupied, Stand-By, Unoccupied and Override status are displayed on the scrolling display.

Alarms
- If alarms are detected, they will automatically be displayed at the end of the status display scroll.
- During an alarm message display, the backlit screen will light up at the same time as the message and shut off during the rest of the status display.
- Two alarms maximum can appear at any given time. The priority for the alarms is as follows:
 - Service
 - Filter
 - Window
 - Low Batt

Three status LED’s on the Terminal Equipment Controller cover are used to indicate the status of the fan (any speed), a call for heat, or a call for cooling.

Fan coil models
- When any of the fan speeds are ON, the FAN LED will illuminate.
- When heating & reheat is ON, the HEAT LED will illuminate.
- When cooling is ON, the COOL LED will illuminate.
User interface

- **Unoccupied mode Override**
 An Override can be made on commercial models during an Unoccupied period. If the Override option is enabled in the lockout configuration pressing the middle override button will resume occupied setpoints for a time specified by parameter ToccTime

- **Local Keypad interface**

 | System | Is used to toggle between the different system mode available as per sequence and menu selected
 | | Pressing repetitively the button will toggle between all the available modes
 | | Available menus are dependent on selected sequence of operation

 | Fan | Is used to toggle between the different fan mode available as per sequence and menu selected
 | | Pressing repetitively the button will toggle between all the available modes
 | | Available menus are dependent on selected sequence of operation and menu selected for Fan

 | °C/°F Override | Middle key is
 | | °C / °F for Hotel models
 | | Override for commercial models

 | Down | Adjust the setpoints down
 | | In cooling mode only the cooling setpoint displayed,
 | | In heating mode only the heating setpoint displayed
 | | In auto mode, (See below)

 | Up | Adjust the setpoints up
 | | In cooling mode only the cooling setpoint displayed,
 | | In heating mode only the heating setpoint displayed
 | | In auto mode, (See below)

- Any setpoint change can be permanent or temporary based on configuration parameter (Setpoint Type)
- Any setpoint written through the network, will be permanent and cancel any active temporary setpoints
- Lockouts of access to certain functions is made with configuration parameter (lockout)

- **Local Setpoint Adjustment** when “Stp Func” = **Dual Stp** (Dual Occupied Setpoints Adjustment)

 Occupied setpoint adjustments

Cooling mode	Heating mode	Off mode	Auto Mode
Cool XX.X °F or °C	Heat XX.X °F or °C	No access to setpoint	Cool XX.X °F or °C or Heat XX.X °F or °C
			Toggle to (Heat or Cool) with MODE button

 - Heat/Cool setpoint toggle with MODE button to be active only in AUTO mode.
 - If cooling, heating or off mode is active, function is disabled

- **Local Setpoint Adjustment** when “Stp Func” = **AttachStp** (Single Occupied Setpoint Adjustment)

 Occupied setpoint adjustments

Cooling mode	Heating mode	Off mode	Auto Mode
Cool XX.X °F or °C	Heat XX.X °F or °C	No access to setpoint	Cool XX.X °F or °C and Heat XX.X °F or °C
			Both heating & cooling setpoints are change simultaneously
			Toggle to (Heat or Cool) with MODE button

- **Unoccupied and Stand-By setpoints adjustments**
 Setting the stand-by and unoccupied setpoints is done through the network or through configuration setup only.
• **Mode button menu sequence.**
 - Modes presented to the user are dependent on sequence of operation selected
 - **Default mode** is in **bold** when sequence of operation parameter is changed

AutoMode set to **On = Auto system mode active.**

<table>
<thead>
<tr>
<th>Sequence selected</th>
<th>Mode Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Cooling Only</td>
<td>Off - Cool</td>
</tr>
<tr>
<td>1 = Heating Only</td>
<td>Off - Heat</td>
</tr>
</tbody>
</table>
| 2 = Cooling / Heating
 Cooling With Electric Reheat | Off – Auto – Heat – Cool |
| 3 = Heating With Electric Reheat | Off - Heat |
| 4 = Electric Reheat Only | Off – Heat |

AutoMode set to **Off = Auto system mode NOT active.**

<table>
<thead>
<tr>
<th>Sequence selected</th>
<th>Mode Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Cooling Only</td>
<td>Off - Cool</td>
</tr>
<tr>
<td>1 = Heating Only</td>
<td>Off - Heat</td>
</tr>
</tbody>
</table>
| 2 = Cooling / Heating
 Cooling With Electric Reheat | Off – Heat – Cool |
| 3 = Heating With Electric Reheat | Off - Heat |
| 4 = Electric Reheat Only | Off – Heat |

• **Available fan button menu sequences.**

<table>
<thead>
<tr>
<th>Fan button menu configuration</th>
<th>Menu presented are dependent on model used and sequence of operation selected</th>
<th>Default value when sequence toggled</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Low-Med-High</td>
<td>3 Speed configuration using 3 fan relays (L-M-H)</td>
<td>High</td>
</tr>
<tr>
<td>1 Low-High</td>
<td>2 Speed configuration using 2 fan relays (L-H)</td>
<td>High</td>
</tr>
<tr>
<td>2 Low-Med-High-Auto</td>
<td>3 Speed configuration with Auto fan speed mode using 3 fan relays (L-M-H)</td>
<td>High</td>
</tr>
<tr>
<td>3 Low-High-Auto</td>
<td>2 Speed configuration with Auto fan speed mode using 2 fan relays (L-H)</td>
<td>High</td>
</tr>
<tr>
<td>4 On-Auto</td>
<td>Single Speed configuration. Auto is for Fan on demand / On is On all the time</td>
<td>High</td>
</tr>
</tbody>
</table>

Auto speed fan mode is also offered in heating mode applications; it will not however have any effect on dehumidification. It will be strictly for noise comfort issues.

Auto Speed Fan Mode operation for sequences 2 and 3 is dependent on Auto Fan parameter. When **Auto Fan** is set to:

- **AS (Default) = Auto Speed** during occupied periods. Fan is always on during occupied periods. Low, medium and high speeds operate on temperature offset from setpoint.
- **AS AD = Auto Speed / Auto Demand** during occupied periods.
 - Medium and high speeds operate on temperature offset from setpoint.
 - Low speed operates on demand and will shut down when no demand is present

Installer configuration parameter menu

Configuration can be done through the network or locally at the Terminal Equipment Controller.

- To enter configuration, press and hold the middle button (°C/°F or Override) for 8 seconds
- If a password lockout is active, “Password” is prompted. Enter password value using the “up” and “down” arrows and press the middle button again to gain access to all configuration properties of the Terminal Equipment Controller. A wrong password entered will prevent local access to the configuration menu.
- Press the same middle button repetitively to scroll between all the available parameters
- Use the up and down key to change the parameter to the desired value.
- To acknowledge and save the new value, press the middle button again.
- The next listed parameter is now displayed

Configuration interface

<table>
<thead>
<tr>
<th>Fan</th>
<th>Re-starts the configuration parameter list at the beginning</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C/°F</td>
<td>Enters the configuration mode. Press and hold for 8 seconds</td>
</tr>
<tr>
<td>Override</td>
<td>Pressing repetitively will scroll all available parameters one by one</td>
</tr>
<tr>
<td>Down</td>
<td>Adjust / rotate parameter value down</td>
</tr>
<tr>
<td>Up</td>
<td>Adjust / rotate parameter value up</td>
</tr>
<tr>
<td>Configuration parameters</td>
<td>Default value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PswrdSet</td>
<td></td>
</tr>
<tr>
<td>Terminal Equipment Controller</td>
<td></td>
</tr>
<tr>
<td>Com Addr</td>
<td></td>
</tr>
<tr>
<td>Pan ID</td>
<td></td>
</tr>
<tr>
<td>Get From</td>
<td></td>
</tr>
<tr>
<td>Get From another device configuration utility</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Channel selection</td>
<td></td>
</tr>
<tr>
<td>Get From</td>
<td></td>
</tr>
<tr>
<td>Get From another device configuration utility</td>
<td></td>
</tr>
<tr>
<td>Channel selection</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- The default value of 0 is **NOT** a valid channel. The valid range of available channel is from 11 to 26.
- PAN ID 1 in association with Channel 26 is reserved for remote wireless switching device configuration only.
- **Viconics recommends using only the 2 last channels (25-2575MHz and 26-2580MHz).**
BI 1
Binary input no.1 configuration

Default value = None

- **(None):** No function will be associated with the input. Input can be used for remote network monitoring.
- **(Rem NSB):** remote NSB timer clock input. The scheduling will now be set as per the binary input. It provides low cost setback operation via a dry contact
 - Contact opened = Occupied
 - Contact closed = Unoccupied

- **(Motion NO) or (Motion NC):** Advanced PIR occupancy functions using a Normally Open (NO) or Normally Closed (NC) remote PIR motion sensor. Occupancy mode is now set as per applied PIR function and configuration. Application information and examples are available on document: [APP-PIR-Guide-Exx](#). This document will provide the installers and system designers with detailed examples on applications, parameter configuration information, sequence of operation, troubleshooting and diagnostic help required for the proper usage of the PIR accessory covers

- **(Window) EMS:** Forces the system to disable any current heating or cooling action by the Terminal Equipment Controller. The mode stays the same and the current setpoints are the same Occupied setpoints. Only the outputs are disabled. There is a Door/Window alarm displayed on the Terminal Equipment Controller to indicate to the local tenant that the door/window needs to be closed for cooling or heating to resume.

BI 2
Binary input no.2 configuration

Default value = None

- **(None):** No function will be associated with the input. Input can be used for remote network monitoring.

- **(Door Dry) Door contact & Motion detector:** This configuration is only functional if binary input #1 is set to **Motion NO** or Motion NC or a **PIR accessory cover** is used.

 With this sequence enabled, the occupancy is now dictated through those 2 inputs. Any motion detected will set the zone to occupied status. The zone will remain permanently in occupied mode until the door contact switch opens momentarily. The Terminal Equipment Controller will then go in stand-by mode. If more movements are detected, the occupied mode will resume. While the door is opened, any movements detected by the remote PIR sensor or the PIR accessory cover will be ignored. Use a Normally Closed contact switching device.
 - Contact opened = Door opened
 - Contact closed = Door closed
RUI 1
Remote Universal input no.1

Configuration

Default value = None

- **(None):** No function will be associated with the input. Input can be used for remote network monitoring.

- **(COC/NH) Change over dry contact. Normally Heat:** Used for hot / cold water or air change over switching in 2 pipe systems.
 - Contact closed = Cold water or air present
 - Contact opened = Hot water or air present
 - Only used and valid if system is setup as 2 pipes. Parameter (Pipe No) set as 2 pipes.

- **(COC/NC) Change over dry contact. Normally Cool:** Used for hot / cold water or air change over switching in 2 pipe systems.
 - Contact closed = Hot water present
 - Contact opened = Cold water present
 - Only used and valid if system is setup as 2 pipes. Parameter (Pipe No) set as 2 pipes.

- **(COS) Change over analog sensor:** Used for hot/cold water or air change over switching in 2 pipe systems. Only used and valid if system is setup as 2 pipes. Parameter (Pipe No) set as 2 pipes. If water temperature is > 76 °F = Hot water present. If water temperature is < 75 °F = Cold water present.

- **(Filter):** a backlit flashing **Filter** alarm will be displayed on the Terminal Equipment Controller LCD screen when the input is energized. It can be tied to a differential pressure switch that monitors filters.
 - Contact opened = No alarm
 - Contact closed = Alarm displayed

- **(Service):** a backlit flashing **Service** alarm will be displayed on the Terminal Equipment Controller LCD screen when the input is energized. It can be tied to the AC unit control card, which provides an alarm in case of malfunction.
 - Contact opened = No alarm
 - Contact closed = Alarm displayed

RBI 2
Remote Binary input no.2

Configuration

Default value = None

- **(None):** No function will be associated with the input. Input can be used for remote network monitoring.

- **(Filter):** a backlit flashing **Filter** alarm will be displayed on the Terminal Equipment Controller LCD screen when the input is energized. It can be tied to a differential pressure switch that monitors filters.
 - Contact opened = No alarm
 - Contact closed = Alarm displayed

- **(Service):** a backlit flashing **Service** alarm will be displayed on the Terminal Equipment Controller LCD screen when the input is energized. It can be tied to the AC unit control card, which provides an alarm in case of malfunction.
 - Contact opened = No alarm
 - Contact closed = Alarm displayed

MenuScroll
Menu scroll

Default value = **On** = Scroll active

Removes the scrolling display and only presents the room temperature/humidity to the user. With this option enabled, no status is given of mode, schedule, and outdoor temperature.

- **On** = Scroll active
- **Off** = Scroll not active

AutoMode
Enables Auto menu for Mode button

Default value = **On**

Enables Auto function for the mode button

- **On** = **Auto active** (Off-Cool-Heat-Auto)
- **Off** = **auto not active** (Off-Cool-Heat)
C or F
Sets scale of the Terminal Equipment Controller
Default value = °F
°F for Fahrenheit scale
°C for Celsius scale
On hotel models, this sets the default value when the Terminal Equipment Controller powers up

%RH disp
Local %RH Display
Default value = OFF
Models with Humidity sensor only
Conditional parameter to Humidity models VTR735xX5x00(X)
Enables the display of humidity below the room temperature on the display
ON = Display %RH
OFF = No display of %RH

Lockout
Keypad lockout levels
Default value = 0 No lock

<table>
<thead>
<tr>
<th>Level</th>
<th>Occupied temperature setpoints</th>
<th>System mode setting</th>
<th>Fan mode setting</th>
<th>Unoccupied Override</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Yes access</td>
<td>Yes access</td>
<td>Yes access</td>
<td>Yes access</td>
</tr>
<tr>
<td>1</td>
<td>Yes access</td>
<td>Yes access</td>
<td>Yes access</td>
<td>No access</td>
</tr>
<tr>
<td>2</td>
<td>Yes access</td>
<td>No access</td>
<td>No access</td>
<td>Yes access</td>
</tr>
<tr>
<td>3</td>
<td>Yes access</td>
<td>No access</td>
<td>No access</td>
<td>No access</td>
</tr>
<tr>
<td>4</td>
<td>No access</td>
<td>No access</td>
<td>No access</td>
<td>Yes access</td>
</tr>
<tr>
<td>5</td>
<td>No access</td>
<td>No access</td>
<td>No access</td>
<td>No access</td>
</tr>
</tbody>
</table>

PulsedHt
Enable pulsed electric heat
Default Value = Off
Enables Vdc modulating pulsed electric reheat applications used with SSR’s.
Off = Regular On-Off control for VR7300A & C models
On = 10 second pulsed time base modulation for VR7300B & E models
Only used with VC340xX Relay Pack models
Can be used with 2 pipes & 4 pipes applications
The VR7300B & E cannot be used for 4 pipes applications

Pipe No
System type installation
Number of pipes
Default is: 4.0 Pipes
Defines the type of system installed
2.0 Pipes, will limit the number of sequences of operation available from 0 to 2
Will enable heat/cool operation from the same output
4.0 Pipes, can access all the sequences of operation from 0 to 4
Will enable heat/cool operation from different output

SeqOpera
Sequence of operation
Default is: Sequence #1
Selects the initial sequence of operation required by the installation type and the application

<table>
<thead>
<tr>
<th>System = 2 Pipes</th>
<th>System = 4 Pipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR7300A, B C & E Models</td>
<td>VR7300A & C Models only</td>
</tr>
<tr>
<td>System = 2 Pipes</td>
<td>System = 4 Pipes</td>
</tr>
<tr>
<td>VR7300A, B C & E Models</td>
<td>VR7300A & C Models only</td>
</tr>
<tr>
<td>0 = Cooling Only</td>
<td>Yes access</td>
</tr>
<tr>
<td>1 = Heating Only</td>
<td>Yes access</td>
</tr>
<tr>
<td>2 = Cooling / Heating</td>
<td>Yes access</td>
</tr>
<tr>
<td>Cooling With Electric Reheat</td>
<td>Cooling With Electric Reheat</td>
</tr>
<tr>
<td>3 = Heating With Electric Reheat</td>
<td>Yes access</td>
</tr>
<tr>
<td>4 = Electric Reheat Only</td>
<td>Yes access</td>
</tr>
</tbody>
</table>

For 2 Pipe output applications, the system access is also limited if RUI 1 is configured for local changeover COS, COC/NC or COC/NC. The current water temperature detected by the RUI 1 then limits the system mode available for the local configuration or network write.

For sequence 2 & 3, set PulsedHt to On to enable pulsed electric reheat applications with VR7300B & E

Fan Menu
Mode button menu configuration
Default is: Menu #4
Menu presented are dependent on model used and sequence of operation selected
Auto Mode operation for sequences 2 and 3 is dependent on Auto Fan parameter

<table>
<thead>
<tr>
<th>Fan Menu</th>
<th>Menu #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Low-Med-High</td>
<td>3 Speed configuration using 3 fan relays (L-M-H)</td>
</tr>
<tr>
<td>1 = Low-High</td>
<td>2 Speed configuration using 2 fan relays (L-H)</td>
</tr>
<tr>
<td>2 = Low-Med-High-Auto</td>
<td>3 Speed configuration with Auto fan speed mode using 3 fan relays (L-M-H)</td>
</tr>
<tr>
<td>3 = Low-High-Auto</td>
<td>2 Speed configuration with Auto fan speed mode using 2 fan relays (L-H)</td>
</tr>
<tr>
<td>4 = On-Auto</td>
<td>Single Speed configuration. Auto is for Fan on demand / On is On all the time</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>DHumiLCK</td>
<td>Dehumidification lockout</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>%RH set</td>
<td>Dehumidification setpoint</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DehuHyst</td>
<td>Dehumidification Hystersys</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DehuCool</td>
<td>Maximum Dehumidification</td>
</tr>
<tr>
<td></td>
<td>Cooling output</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>St-By TM</td>
<td>Stand-by Timer value</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Unocc TM</td>
<td>Unoccupied Timer value</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>St-By HT</td>
<td>Stand-by heating setpoint</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>St-By CL</td>
<td>Stand-by cooling setpoint limit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Unocc HT</td>
<td>Unoccupied heating setpoint</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Unocc CL</td>
<td>Unoccupied cooling setpoint limit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>heat max</td>
<td>Maximum heating setpoint limit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>cool min</td>
<td>Minimum cooling setpoint limit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pband
Proportional band setting
Default is : **3**

Adjust the proportional band used by the Terminal Equipment Controller PI control loop.

Warning. Note that the default value of 3.0 °F (1.2 °C) gives satisfactory operation in most normal installation cases. The use of a superior proportional band different than the factory one is normally warranted in applications where the Terminal Equipment Controller location is problematic and leads to unwanted cycling of the unit. A typical example is a wall mounted unit where the Terminal Equipment Controller is installed between the return and supply air feeds and is directly influenced by the supply air stream of the unit.

<table>
<thead>
<tr>
<th>Value</th>
<th>F scale Pband</th>
<th>C scale Pband</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3°F</td>
<td>1.2°C</td>
</tr>
<tr>
<td>4</td>
<td>4°F</td>
<td>1.7°C</td>
</tr>
<tr>
<td>5</td>
<td>5°F</td>
<td>2.2°C</td>
</tr>
<tr>
<td>6</td>
<td>6°F</td>
<td>2.8°C</td>
</tr>
<tr>
<td>7</td>
<td>7°F</td>
<td>3.3°C</td>
</tr>
<tr>
<td>8</td>
<td>8°F</td>
<td>3.9°C</td>
</tr>
<tr>
<td>9</td>
<td>9°F</td>
<td>5.0°C</td>
</tr>
<tr>
<td>10</td>
<td>10°F</td>
<td>5.6°C</td>
</tr>
</tbody>
</table>

Set Type
Temporary setpoint enable
Default is : **Permanent**

Enables temporary setpoints feature to any change of occupied or unoccupied setpoint.

Temporar: (temporary) Local changes to the heating or cooling setpoints by the user are temporary. They will remain effective for the duration specified by ToccTime. Setpoints will revert back to their default value after internal timer ToccTime expires.

To change setpoints permanently, revert to **No** this variable or write setpoints through the network. Any setpoints written through the network will be permanent ones and saved to EEPROM.

Permanent: (permanent) Any change of occupied or unoccupied setpoints through the keypad by the user are permanent and saved to & EEPROM

SptFunc
Local setpoint settings
Default value = **Dual Stp**

Set the local setpoint interface for the user

Dual Stp (Dual Occupied Setpoints Adjustment)
AttachStp (Single Occupied Setpoint Adjustment)

TOccTime
Temporary occupancy time
Default value = **2 hours**

Temporary occupancy time with occupied mode setpoints when override function is enabled

When the Terminal Equipment Controller is in unoccupied mode, function is enabled with either the menu or UI2 configured as remote override input.

Range is: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, & up to 24 hours

deadband
Minimum deadband
Default value = **2.0 °F (1.0 °C)**

Minimum deadband value between the heating and cooling setpoints. If modified, it will be applied only when any of the setpoints are modified.

Range is: 2, 3, 4 or 5 °F, 1.0 °F increments (1.0 to 2.5 °C, 0.5 °C increments)

cal RS
Room temperature sensor calibration
Default value = **0.0 °F or °C**

Offset that can be added/subtracted to actual displayed room temperature

Range is: ±5.0 °F, 1.0 °F increments (±2.5 °C, 0.5 °C increments)

cal RH
Humidity sensor calibration
Default value = **0 %RH**

Offset that can be added/subtracted to actual displayed humidity by ±15.0 %RH.

Range is: ±15.0 %RH

Auto Fan
Auto Fan Function
Default value: **AS**

Auto Speed Fan Mode operation for Fan Sequences 2 and 3

AS = **Auto Speed** during occupied periods. Fan is always on during occupied periods.

AS AD = **Auto Speed / Auto Demand** during occupied periods.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool cph</td>
<td>Cooling output cycles per hour</td>
<td>4 C.P.H.</td>
<td>Will set the maximum number cycles per hour under normal control operation. It represents the maximum number of cycles that the equipment will turn ON and OFF in one hour. Note that a higher C.P.H will represent a higher accuracy of control at the expense of wearing mechanical components faster. Range is: 3, 4, 5, 6, 7 & 8 C.P.H.</td>
</tr>
<tr>
<td>Heat cph</td>
<td>Heating output cycles per hour</td>
<td>4 C.P.H.</td>
<td>Will set the maximum number cycles per hour under normal control operation. It represents the maximum number of cycles that the equipment will turn ON and OFF in one hour. Note that a higher C.P.H will represent a higher accuracy of control at the expense of wearing mechanical components faster. Range is: 3, 4, 5, 6, 7 & 8 C.P.H.</td>
</tr>
<tr>
<td>CoolNoNc</td>
<td>Normally open or close device</td>
<td>NC</td>
<td>Set's the type of valve used for heating NC = Valve is normally closed when no power is present NO = Valve is normally opened when no power is present</td>
</tr>
<tr>
<td>HeatNoNc</td>
<td>Normally open or close device</td>
<td>NC</td>
<td>Set's the type of valve used for heating NC = Valve is normally closed when no power is present NO = Valve is normally opened when no power is present</td>
</tr>
</tbody>
</table>
VTR73xxA Terminal Equipment Controller Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Equipment Controller power requirements:</td>
<td>7.0 Vdc +/- 10% 2.4 watts minimum</td>
</tr>
<tr>
<td>Operating conditions:</td>
<td>0 °C to 50 °C (32 °F to 122 °F)</td>
</tr>
<tr>
<td>Storage conditions:</td>
<td>-30 °C to 50 °C (-22 °F to 122 °F)</td>
</tr>
<tr>
<td>Temperature sensor:</td>
<td>Local 10 K NTC thermistor</td>
</tr>
<tr>
<td>Temperature sensor resolution:</td>
<td>± 0.1 °C (± 0.2 °F)</td>
</tr>
<tr>
<td>Temperature control accuracy:</td>
<td>± 0.5 °C (± 0.9 °F) @ 21 °C (70 °F) typical calibrated</td>
</tr>
<tr>
<td>Humidity sensor and calibration:</td>
<td>Single point calibrated bulk polymer type sensor</td>
</tr>
<tr>
<td>Humidity sensor precision:</td>
<td>Reading range from 10-90 % R.H. non-condensing</td>
</tr>
<tr>
<td></td>
<td>10 to 20% precision is 10%</td>
</tr>
<tr>
<td></td>
<td>20% to 80% precision is 5%</td>
</tr>
<tr>
<td></td>
<td>80% to 90% precision is 10%</td>
</tr>
<tr>
<td>Humidity sensor stability</td>
<td>Less than 1.0 % yearly (typical drift)</td>
</tr>
<tr>
<td>Dehumidification setpoint range:</td>
<td>30% to 95% R.H.</td>
</tr>
<tr>
<td>Occ, Stand-By and Unocc cooling setpoint range:</td>
<td>12.0 to 37.5 °C (54 to 100 °F)</td>
</tr>
<tr>
<td>Occ, Stand-By and Unocc heating setpoint range:</td>
<td>4.5 °C to 32 °C (40 °F to 90 °F)</td>
</tr>
<tr>
<td>Room and outdoor air temperature display range:</td>
<td>-40 °C to 50 °C (-40 °F to 122 °F)</td>
</tr>
<tr>
<td>Proportional band for room temperature control:</td>
<td>Cooling & Heating: Default: 1.8°C (3.2°F)</td>
</tr>
<tr>
<td>Binary inputs:</td>
<td>Dry contact across terminal BI1, BI2 & UI3 to Scom</td>
</tr>
<tr>
<td>Wire gauge</td>
<td>14 gauge maximum, 22 gauge recommended</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>4.94” x 3.38” x 1.13”</td>
</tr>
<tr>
<td>Approximate shipping weight:</td>
<td>0.75 lb (0.34 kg)</td>
</tr>
<tr>
<td>Agency Approvals all models:</td>
<td>UL: UL 873 (US) and CSA C22.2 No. 24 (Canada), File E27734 with CCN XAPX (US) and XAPX7 (Canada)</td>
</tr>
<tr>
<td>Industry Canada:</td>
<td>ICES-003 (Canada)</td>
</tr>
<tr>
<td>Agency Approvals Wireless models</td>
<td>FCC: Compliant to CFR 47, Part 15, Subpart B, Class A (US)</td>
</tr>
<tr>
<td></td>
<td>CE: EMC Directive 89/336/EEC (Europe Union)</td>
</tr>
<tr>
<td></td>
<td>C-Tick: AS/NZS CISPR 22 Compliant (Australia / New Zealand)</td>
</tr>
<tr>
<td></td>
<td>Supplier Code Number N10696</td>
</tr>
</tbody>
</table>

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

Important Notice

All VTR73xxA series controls are for use as operating controls only and are not safety devices. These instruments have undergone rigorous tests and verifications prior to shipment to ensure proper and reliable operation in the field. Whenever a control failure could lead to personal injury and/or loss of property, it becomes the responsibility of the user/installer/electrical system designer to incorporate safety devices (such as relays, flow switch, thermal protections, etc...) and/or alarm system to protect the entire system against such catastrophic failures. Tampering of the devices or miss application of the device will void warranty.